Visa is a world leader in digital payments, facilitating more than 215 billion payments transactions between consumers, merchants, financial institutions and government entities across more than 200 countries and territories each year. Our mission is to connect the world through the most innovative, convenient, reliable and secure payments network, enabling individuals, businesses and economies to thrive.
When you join Visa, you join a culture of purpose and belonging – where your growth is priority, your identity is embraced, and the work you do matters. We believe that economies that include everyone everywhere, uplift everyone everywhere. Your work will have a direct impact on billions of people around the world – helping unlock financial access to enable the future of money movement.
Join Visa: A Network Working for Everyone.
The Sr. ML Scientist will work with a team to conduct extraordinary research on data analytics and contribute to the long-term research agenda in large-scale data analytics and machine learning, as well as deliver innovative technologies and insights to Visa's strategic products and business. This role represents a phenomenal chance to create key contributions to Visa's strategic vision as a world-leading data-driven company. The successful candidate must have strong academic track record and demonstrate excellent software engineering skills. The successful candidate will be a self-starter comfortable with ambiguity, with strong attention to detail, and excellent collaboration skills.
Our team is focusing on building a new product suite for Visa’s real time payments options! This will have a fraud-management focus and be scaled across many markets at Visa. This suite will also bring ‘real-time fraud monitoring’ into play using the latest in Machine Learning & Deep Learning technologies. We are seeking ML Scientists that come from a wide array of backgrounds with the curiosity about creating something new and exciting for Visa.
Essential Functions
This is a hybrid position. Hybrid employees can alternate time between both remote and office. Employees in hybrid roles are expected to work from the office two days a week, Tuesdays, and Wednesdays with a general guidepost of being in the office 50% of the time based on business needs.
Basic Qualifications:
2+ years of relevant work experience and a Bachelors degree, OR 5+ years of relevant work experience
Preferred Qualifications:
• Masters in Computer Science, Operations Research, Statistics, or highly quantitative field with strength in Deep Learning, Machine Learning, Data Analytics, Statistical or other mathematical analysis, OR 2+ years of relevant work experience and a Bachelors degree
• Relevant coursework in modeling techniques such as logistic regression, Naïve Bayes, SVM, decision trees, or neural networks.
• Ability to program in one or more scripting languages such as Perl or Python and one or more programming languages such as Java, C++, or C#.
• Experience with one or more common statistical tools such SAS, R, KNIME, MATLAB.
• 2+ years of work experience with a Masters OR 5+ years of work experience with a Bachelor’s Degree in Computer Science, Operations Research, Statistics, or highly quantitative field with strength in Deep Learning, Machine Learning, Data Analytics, Statistical or other mathematical analysis
• Deep learning experience with TensorFlow is a plus.
• Experience with Natural Language Processing is a plus.
• Experience working with large datasets using tools like Hadoop, MapReduce, Pig, or Hive is a plus.
• Publications or presentation in recognized Machine Learning and Data Mining journals/conferences is a plus.
All your information Visa is an EEO Employer. Qualified applicants will receive consideration for employment without regard to race, color, religion, sex, national origin, sexual orientation, gender identity, disability or protected veteran status. Visa will also consider for employment qualified applicants with criminal histories in a manner consistent with EEOC guidelines and applicable local law. will be kept confidential according to EEO guidelines.