The Data & Analytics (DnA) function brings both quantitative and qualitative insights to the entire company (including all game teams) through Studio Analytics, Data Engineering, Data Science and Machine Learning Engineering. We develop and improve our Studio’s data technical capabilities to bring data insights right to the studio partners' fingertips.

EA serves millions of players with multi-genre online experiences via Live Services. Games of the last decade continue to entertain and engage audiences with new titles launching each year. The common need across all game experiences is modern personalization approaches that enhance and optimize player experiences, leveraging the latest Machine Learning technologies to retrofit and augment game features, game systems, and game mechanics. We are looking for a Machine Learning engineer who will work amidst unique technologies to deliver in-game Personalization by building global-scale production systems. You will report to the technical director of AI/ML. If you have a passion for creating advanced analytics data products to allow partners to make crucial decisions, you want to make impacts to help player engagement by providing an autonomous platform; then we want to talk to you.

Responsibilities:

  1. Enforce the application of best practices in MLOps and ML model production.
  2. Optimize production-ready ML models.
  3. Design, construct, and maintain production ML systems.
  4. Work closely with team members for efficient deployment and scalability of ML models.
  5. Stay updated with the latest technology and platforms and guide the MLE team in the adoption of new technologies and platforms.

Requirements:

  1. Bachelor's degree in Computer Science, Data Science, or related field. 
  2. Comprehensive knowledge in Machine Learning, MLOps practices, and ML model production.
  3. Excellent communication and coordination skills to work in a cross-functional team
  4. Profound knowledge in both Machine Learning and MLOps.
  5.  Experience in designing and maintaining ML systems, developing production-ready ML models.
  6. Knowledge of the latest technology and platforms in the field such as AWS SageMaker, GCP Vertex AI, Airflow, Docker, CI/CD practices, ...
  7. Comfortable working in an agile environment.
  8. 4+ years of industry experience with 1+ years of people management experience

Ceci ne s’applique pas au Québec.

BC COMPENSATION AND BENEFITS

The base salary ranges listed below are for the defined geographic market pay zones in these locations. If you reside outside of these locations, a recruiter will advise on the base salary range and benefits for your specific location. EA has listed the base salary ranges it in good faith expects to pay applicants for this role in the locations listed, as of the time of this posting. Salary offered will be determined based on numerous relevant business and candidate factors including, for example, education, qualifications, certifications, experience, skills, geographic location, and business or organizational needs.

BASE SALARY RANGES

  • British Columbia (depending on location e.g. Vancouver vs. Victoria): º $133,400 - $193,200 CAN Annually

Base salary is just one part of the overall compensation at EA. We also offer a package of benefits including vacation (3 weeks per year to start), 10 days per year of sick time, paid top-up to EI/QPIP benefits up to 100% of base salary when you welcome a new child (12 weeks for maternity, and 4 weeks for parental/adoption leave), extended health/dental/vision coverage, life insurance, disability insurance, retirement plan to regular full-time employees. Certain roles may also be eligible for bonus and equity.

Salary

$133,400 - $193,200

Yearly based

Location

Vancouver, British Columbia, Canada

Job Overview
Job Posted:
4 months ago
Job Expires:
Job Type
Full Time

Share This Job: