Abnormal Security is looking for an Applied Data Scientist to join the Message Detection - Attack Detection team. At Abnormal, we protect our customers against nefarious adversaries who are constantly evolving their techniques and tactics to outwit and undermine the traditional approaches to Security. That’s what makes our novel behavioral-based approach so…Abnormal. Abnormal has constantly been named as one of the top cybersecurity startups and our behavioral AI system has helped us win various cybersecurity accolades resulting in being trusted to protect more than 17% of the Fortune 1000 ( and ever growing ).
In a landscape where a single successful attack can lead to financial losses of millions of dollars, the Attack Detection team plays the central role of building an extremely high recall Detection Engine that can operate on hundreds of millions of messages at milliseconds latency. The Attack Detection team’s mission statement is to provide world-class detector efficacy to tackle changing attack landscape using a combination of generalizable and auto trained models as well as specific detectors for high value attack categories.
This team is solving a multi-layered detection problem, which involves modeling communication patterns to establish enterprise-wide baselines, incorporating these patterns as robust signals, and combining these signals with contextual information to create extremely precise systems. The team builds discriminative signals at various levels including message level (eg. presence of particular phrases), sender-level (eg.frequency of sender) and recipient level (eg.likelihood of receiving a safe message). These signals are then combined and utilized to train highly accurate model based as well as heuristic detectors. Additionally, to continuously adapt to new unseen attacks, the team builds out different stages in our automated model retraining pipelines including data analytics and generation stages, modeling stages, production evaluation stages as well as automated deployment stages.
This role would also have an opportunity to have a significant impact on the overall charter, direction and roadmap of the team. The Applied Data Scientist would be expected to deeply understand the domain of false negatives i.e. the current and future attacks which can cause significant customer workflow disruption and form a strong understanding of our features to They would help define the technical roadmap required to address the most pressing customer problems and simultaneously operate our detection decisioning system at an extremely high recall.
This position is not:
#LI-RT1