我們正在尋找一位充滿熱情且技術熟練的AI工程師加入我們的團隊,負責設計、開發和實施人工智慧解決方案。你將與跨職能團隊合作,利用機器學習、深度學習和資料分析技術來解決複雜問題並推動產品創新。

主要職責

  • 設計並開發AI模型,包括機器學習和深度學習演算法,以滿足業務需求。

  • 清理、預處理和分析大規模資料集,確保模型輸入資料的品質。

  • 將AI模型整合到現有系統或應用程式中,並優化其效能與可擴展性。

  • 與資料科學家、軟體工程師和產品經理合作,定義專案目標並交付成果。

  • 持續監控和改進已部署的AI系統,確保其準確性和可靠性。

  • 研究最新的AI技術和趨勢,提出應用於公司產品的創新建議。

  • 撰寫清晰的技術文件,記錄模型開發過程和部署細節。

  • 開發和實施大型語言模型(LLMs)、檢索增強生成(RAG)系統、AI代理和基於圖的AI解決方案,以增強智慧系統。

  • 優化LLMs以適應特定用例,包括微調、提示工程和生產環境中的部署。

  • 設計和構建RAG管道,整合外部知識來源,提升模型準確性和上下文相關性。

  • 創建具備任務規劃、決策制定和多步推理能力的自主AI代理。

  • 利用基於圖的AI技術,如知識圖譜和圖神經網路,建模複雜關係並增強決策能力。

技能與資格要求

  • 學歷:電腦科學、資料科學、數學、工程或相關領域的學士學位(碩士或博士學位尤佳)。

  • 經驗:至少2-3年在AI、機器學習或相關領域的實務經驗。

  • 程式語言:精通Python,熟悉相關套件(如TensorFlow、PyTorch、Scikit-learn、Pandas、LangChain、LlamaIndex)。

技術能力

  • 深入理解機器學習演算法(例如回歸、分類、叢集)和深度學習框架(例如CNN、RNN、Transformer)。

  • 具備大型語言模型(LLMs)的專業知識,包括微調、提示工程和部署。

  • 熟悉檢索增強生成(RAG)系統,包括向量資料庫(例如Pinecone、Weaviate)和嵌入模型。

  • 具備構建AI代理的能力,支援任務自動化、推理和與外部API的互動。

  • 了解基於圖的AI,包括圖神經網路(GNNs)、知識圖譜及其在推薦系統或網路分析中的應用。

  • 精通資料處理、特徵工程以及文字、圖像或多模態資料的嵌入技術。

  • 具備雲端平台(例如AWS、Google Cloud、Azure)和模型部署管道的經驗。

問題解決能力:能夠獨立分析並解決技術挑戰。

團隊合作:具備良好的溝通能力和跨部門協作經驗。

加分條件

  • 具備自然語言處理(NLP)、電腦視覺或強化學習的專案經驗。

  • 熟悉大數據工具(例如Hadoop、Spark)或容器技術(例如Docker、Kubernetes)。

  • 發表過AI相關論文或擁有開源專案貢獻。

  • 具備LLM框架(例如Hugging Face Transformers、OpenAI API)和代理框架(例如AutoGen、CrewAI)的實務經驗。

  • 熟悉圖資料庫(例如Neo4j、ArangoDB)和圖演算法在AI應用中的知識。

Who We Are

We are seeking a passionate and technically skilled AI Engineer to join our team, responsible for designing, developing, and implementing artificial intelligence solutions. You will collaborate with cross-functional teams, leveraging machine learning, deep learning, and data analysis techniques to address complex problems and drive product innovation.

What You Will Do

  • Design and develop AI models, including machine learning and deep learning algorithms, to address business needs.

  • Clean, preprocess, and analyze large-scale datasets to ensure the quality of model input data.

  • Integrate AI models into existing systems or applications, optimizing for performance and scalability.

  • Collaborate with data scientists, software engineers, and product managers to define project goals and deliver results.

  • Continuously monitor and improve deployed AI systems to ensure accuracy and reliability.

  • Research the latest AI technologies and trends, proposing innovative applications for company products.

  • Write clear technical documentation, detailing model development processes and deployment specifics.

  • Develop and implement large language models (LLMs), retrieval-augmented generation (RAG) systems, AI agents, and graph-based AI solutions to enhance intelligent systems.

  • Optimize LLMs for specific use cases, including fine-tuning, prompt engineering, and deployment in production environments.

  • Design and build RAG pipelines to integrate external knowledge sources, improving model accuracy and contextual relevance.

  • Create autonomous AI agents capable of task planning, decision-making, and multi-step reasoning.

  • Leverage graph-based AI techniques, such as knowledge graphs and graph neural networks, to model complex relationships and enhance decision-making.

Who You Are

  • Bachelor’s degree in Computer Science, Data Science, Mathematics, Engineering, or a related field (Master’s or PhD preferred).

  • Experience: At least 2-3 years of hands-on experience in AI, machine learning, or related fields.

  • Technical Skills:

    • Programming Languages: Proficient in Python, with strong familiarity with relevant libraries (e.g., TensorFlow, PyTorch, Scikit-learn, Pandas, LangChain, LlamaIndex).

    • Deep understanding of machine learning algorithms (e.g., regression, classification, clustering) and deep learning frameworks (e.g., CNN, RNN, Transformer).

    • Expertise in large language models (LLMs), including fine-tuning, prompt engineering, and deployment.

    • Experience with retrieval-augmented generation (RAG) systems, including vector databases (e.g., Pinecone, Weaviate) and embedding models.

    • Proficiency in building AI agents with capabilities in task automation, reasoning, and interaction with external APIs.

    • Knowledge of graph-based AI, including graph neural networks (GNNs), knowledge graphs, and their applications in recommendation systems or network analysis.

    • Strong skills in data processing, feature engineering, and embeddings for text, image, or multimodal data.

    • Experience with cloud platforms (e.g., AWS, Google Cloud, Azure) and model deployment pipelines.

  • Problem-Solving: Ability to independently analyze and resolve technical challenges.

  • Team Collaboration: Excellent communication skills and experience working across departments.

Bonus If You Have

  • Project experience in natural language processing (NLP), computer vision, or reinforcement learning.

  • Familiarity with big data tools (e.g., Hadoop, Spark) or container technologies (e.g., Docker, Kubernetes).

  • Published AI-related papers or contributions to open-source projects.

  • Hands-on experience with LLM frameworks (e.g., Hugging Face Transformers, OpenAI API) and agent frameworks (e.g., AutoGen, CrewAI).

  • Knowledge of graph databases (e.g., Neo4j, ArangoDB) and graph algorithms for AI applications.

Location

Taipei

Job Overview
Job Posted:
4 days ago
Job Expires:
Job Type
Full Time

Share This Job: