我們正在尋找一位充滿熱情且技術熟練的AI工程師加入我們的團隊,負責設計、開發和實施人工智慧解決方案。你將與跨職能團隊合作,利用機器學習、深度學習和資料分析技術來解決複雜問題並推動產品創新。
主要職責
設計並開發AI模型,包括機器學習和深度學習演算法,以滿足業務需求。
清理、預處理和分析大規模資料集,確保模型輸入資料的品質。
將AI模型整合到現有系統或應用程式中,並優化其效能與可擴展性。
與資料科學家、軟體工程師和產品經理合作,定義專案目標並交付成果。
持續監控和改進已部署的AI系統,確保其準確性和可靠性。
研究最新的AI技術和趨勢,提出應用於公司產品的創新建議。
撰寫清晰的技術文件,記錄模型開發過程和部署細節。
開發和實施大型語言模型(LLMs)、檢索增強生成(RAG)系統、AI代理和基於圖的AI解決方案,以增強智慧系統。
優化LLMs以適應特定用例,包括微調、提示工程和生產環境中的部署。
設計和構建RAG管道,整合外部知識來源,提升模型準確性和上下文相關性。
創建具備任務規劃、決策制定和多步推理能力的自主AI代理。
利用基於圖的AI技術,如知識圖譜和圖神經網路,建模複雜關係並增強決策能力。
技能與資格要求
學歷:電腦科學、資料科學、數學、工程或相關領域的學士學位(碩士或博士學位尤佳)。
經驗:至少2-3年在AI、機器學習或相關領域的實務經驗。
程式語言:精通Python,熟悉相關套件(如TensorFlow、PyTorch、Scikit-learn、Pandas、LangChain、LlamaIndex)。
技術能力
深入理解機器學習演算法(例如回歸、分類、叢集)和深度學習框架(例如CNN、RNN、Transformer)。
具備大型語言模型(LLMs)的專業知識,包括微調、提示工程和部署。
熟悉檢索增強生成(RAG)系統,包括向量資料庫(例如Pinecone、Weaviate)和嵌入模型。
具備構建AI代理的能力,支援任務自動化、推理和與外部API的互動。
了解基於圖的AI,包括圖神經網路(GNNs)、知識圖譜及其在推薦系統或網路分析中的應用。
精通資料處理、特徵工程以及文字、圖像或多模態資料的嵌入技術。
具備雲端平台(例如AWS、Google Cloud、Azure)和模型部署管道的經驗。
問題解決能力:能夠獨立分析並解決技術挑戰。
團隊合作:具備良好的溝通能力和跨部門協作經驗。
加分條件
具備自然語言處理(NLP)、電腦視覺或強化學習的專案經驗。
熟悉大數據工具(例如Hadoop、Spark)或容器技術(例如Docker、Kubernetes)。
發表過AI相關論文或擁有開源專案貢獻。
具備LLM框架(例如Hugging Face Transformers、OpenAI API)和代理框架(例如AutoGen、CrewAI)的實務經驗。
熟悉圖資料庫(例如Neo4j、ArangoDB)和圖演算法在AI應用中的知識。
Who We Are
We are seeking a passionate and technically skilled AI Engineer to join our team, responsible for designing, developing, and implementing artificial intelligence solutions. You will collaborate with cross-functional teams, leveraging machine learning, deep learning, and data analysis techniques to address complex problems and drive product innovation.
What You Will Do
Design and develop AI models, including machine learning and deep learning algorithms, to address business needs.
Clean, preprocess, and analyze large-scale datasets to ensure the quality of model input data.
Integrate AI models into existing systems or applications, optimizing for performance and scalability.
Collaborate with data scientists, software engineers, and product managers to define project goals and deliver results.
Continuously monitor and improve deployed AI systems to ensure accuracy and reliability.
Research the latest AI technologies and trends, proposing innovative applications for company products.
Write clear technical documentation, detailing model development processes and deployment specifics.
Develop and implement large language models (LLMs), retrieval-augmented generation (RAG) systems, AI agents, and graph-based AI solutions to enhance intelligent systems.
Optimize LLMs for specific use cases, including fine-tuning, prompt engineering, and deployment in production environments.
Design and build RAG pipelines to integrate external knowledge sources, improving model accuracy and contextual relevance.
Create autonomous AI agents capable of task planning, decision-making, and multi-step reasoning.
Leverage graph-based AI techniques, such as knowledge graphs and graph neural networks, to model complex relationships and enhance decision-making.
Who You Are
Bachelor’s degree in Computer Science, Data Science, Mathematics, Engineering, or a related field (Master’s or PhD preferred).
Experience: At least 2-3 years of hands-on experience in AI, machine learning, or related fields.
Technical Skills:
Programming Languages: Proficient in Python, with strong familiarity with relevant libraries (e.g., TensorFlow, PyTorch, Scikit-learn, Pandas, LangChain, LlamaIndex).
Deep understanding of machine learning algorithms (e.g., regression, classification, clustering) and deep learning frameworks (e.g., CNN, RNN, Transformer).
Expertise in large language models (LLMs), including fine-tuning, prompt engineering, and deployment.
Experience with retrieval-augmented generation (RAG) systems, including vector databases (e.g., Pinecone, Weaviate) and embedding models.
Proficiency in building AI agents with capabilities in task automation, reasoning, and interaction with external APIs.
Knowledge of graph-based AI, including graph neural networks (GNNs), knowledge graphs, and their applications in recommendation systems or network analysis.
Strong skills in data processing, feature engineering, and embeddings for text, image, or multimodal data.
Experience with cloud platforms (e.g., AWS, Google Cloud, Azure) and model deployment pipelines.
Problem-Solving: Ability to independently analyze and resolve technical challenges.
Team Collaboration: Excellent communication skills and experience working across departments.
Bonus If You Have
Project experience in natural language processing (NLP), computer vision, or reinforcement learning.
Familiarity with big data tools (e.g., Hadoop, Spark) or container technologies (e.g., Docker, Kubernetes).
Published AI-related papers or contributions to open-source projects.
Hands-on experience with LLM frameworks (e.g., Hugging Face Transformers, OpenAI API) and agent frameworks (e.g., AutoGen, CrewAI).
Knowledge of graph databases (e.g., Neo4j, ArangoDB) and graph algorithms for AI applications.